Solid-density plasma nanochannel generated by a fast single ion in condensed matter.

نویسندگان

  • A V Lankin
  • I V Morozov
  • G E Norman
  • S A Pikuz
  • I Yu Skobelev
چکیده

A plasma model of relaxation of a medium in heavy-ion tracks in condensed matter is proposed. The model is based on three assumptions: the Maxwell distribution of plasma electrons, localization of plasma inside the track nanochannel, and constant values of the plasma electron density and temperature during the x-ray irradiation. The model of multiple ionization of target atoms by a fast projectile ion is used to determine the initial conditions. An analysis of the results of the calculations performed makes it possible to define when the atomic relaxation model is a very rough approximation and the plasma relaxation model must be used. It is demonstrated that the plasma relaxation model adequately describes the x-ray spectra observed upon interaction of a fast ion with condensed target. The comparison with the experimental data justifies the reliability of the plasma relaxation model. Preassumptions of plasma relaxation model are validated by the molecular-dynamics simulation. An x-ray spectral method based on the plasma relaxation model is proposed for diagnostics of the plasma in fast ion tracks. The results obtained can be useful in examining the initial stage of defect formation in solids under irradiation with single fast heavy ions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrolyte solution transport in electropolar nanotubes.

Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. ...

متن کامل

THz operation of asymmetric-nanochannel devices.

The THz spectrum lies between microwaves and the mid-infrared, a region that remains largely unexplored mainly due to the bottleneck issue of lacking compact, solid state, emitters and detectors. Here, we report on a novel asymmetric-nanochannel device, known as the self-switching device, which can operate at frequencies up to 2.5 THz for temperature up to 150 K. This is, to our knowledge, not ...

متن کامل

Present and future perspectives for high energy density physics with intense heavy ion and laser beams

Intense heavy ion beams from the Gesellschaft für Schwerionenforschung ~GSI, Darmstadt, Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laser for ion experiments ~PHELIX! and nanosecond high energy laser for ion experiments ~NHELIX! are a unique combination to facilitate pioneering beam-plasma interaction experiments, to generate and probe high...

متن کامل

Modeling Magnetic Field in Heavy ion Collisions Using Two Different Nuclear Charge Density Distributions

By studying the properties of matter during heavy-ion collisions, a better understanding of the Quark-Gluon plasma is possible. One of the main areas of this study is the calculation of the magnetic field, particularly how the values of conductivity affects this field and how the field strength changes with proper time. In matching the theoretical calculations with results obtained in lab, two diffe...

متن کامل

Spherical self-consistent atomic deformation model for first-principles energy calculations in ionic crystalline solids.

We present a first-principles method @called spherical self-consistent atomic deformation ~SSCAD!# for calculating the energy per unit cell in ionic crystalline solids. SSCAD is a density-functional method using the local-density approximation ~LDA!. Wave functions are localized about each ion, resulting in a single-particle Schrödinger’s equation for each ion. To simplify the calculation, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009